Problems IV on Calculus of Variations

Matematik Lth Spring 2020

March 12, 2020

Problem 1 Minimize the functional

\[
J[y] = \int_{0}^{2} y'(x)(x + y'(x)) \, dx
\]

over all \(y \in D^1 \) with \(y(0) = y(2) = 0 \).

Problem 2 Consider the functional

\[
J[y] = \int_{a}^{b} f(y(x), y'(x)) \, dx
\]

and the boundary condition \(y(a) = y(b) \). Assume that the function \(y' \mapsto f_y(y, y') \) is strictly monotonic for all \(y \). Prove that any extremal can be extended to a periodic \(C^1 \) function.

Problem 3

1. Use the corner conditions to find all \(D^1 \) extremals for the functional (cmp. Problem I.6)

\[
J[y] = \int_{0}^{2} y^2(x)(1 - y'(x))^2 \, dx
\]

with the boundary conditions \(y(0) = 0 \) and \(y(2) = 1 \).

2. (Hard) Find all \(D^1 \) extremals for the functional above with the boundary conditions \(y(0) = 0 \) and \(y(2) = A \) for all real \(A \).
Problem 4 For the problem of minimizing

\[J[y] = \int_a^b (y'(x)^4 - y'(x)^2) \, dx \]

subject to \(y(a) = A \) and \(y(b) = B \),

1. Find a condition that determines that a broken extremal with exactly one corner exists.

2. Assuming the condition holds, find all such extremals.

Problem 5 (Hard) Consider the simplest problem of calculus of variations for the functional

\[J[y] = \int_a^b f(x, y(x), y'(x)) \, dx \]

with \(y(a) \) and \(y(b) \) being fixed. Assume that \(f \in C^2 \). Prove that

\[\inf_{y \in D^1} J[y] = \inf_{y \in C^1} J[y]. \]

Hint: consider \(y \in D^1 \) with just one corner at \(c \) and show that it can be approximated by \(\hat{y} \in C^1 \) such that \(J[y] \) and \(J[\hat{y}] \) can be done arbitrarily close. For example, consider \(y'(x) = g(x) + A\theta(x - c) \) where \(g \) continuous and \(\theta \) is Heaviside function and construct an explicit approximation, then estimate \(J \) via Taylor for \(f \).