Mer om determinanter

Vi har två definitioner av determinant:
1) Volym/area med tecken
2) Kombinatorisk tolkning

Vi säger också att (visat för \( n = 2,3 \)):

Sats 1: \( \det(AB) = \det A \cdot \det B \)
om \( A, B \) är \((n\times n)\)-matriser.

Korollarium 1: Om \( A \) är inverterbar
så är \( \det(A^{-1}) = \frac{1}{\det(A)} \).

Bevis: \( \det(AA^{-1}) = \det(I) = 1 \)
men \( \det(AA^{-1}) = \{ \text{Sats 1} \} = \det A \cdot \det A^{-1} \).

Den kombinatoriska def. gav
Lemma 1 \( \det A = \det A^T \).

Ur detta följer att \( \text{Sats 3, IX} \) kan utvidgas
till alla påståendena för \( A^T \) istället för \( A \).

T.ex. ger detta att
rädena i en kvadratisk matris är linj. obero
\( \Leftrightarrow \) kolonnerna är linj. obero.
Underdeterminanter och adjunkten

Låt \( A \) vara en \((3 \times 3)\)-matrix, \( A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \). Vi skall uttrycka del\( A \) på ett nytt sätt.

\[
\text{det } A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = D_{11} - D_{12} + D_{13}
\]

\( D_{ij} \) = determinanten av den matrix som fås genom att radera rad \( i \) och kolonn \( j \) ur \( A \).

\( D_{ij} \) kallas underdeterminanter.

Tillbaka till kombinatoriken:

\[
+ a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}
\]

Kan också skriva:

\[
- a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} - a_{23} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}
\]

Utveckling efter 1:a raden

Utveckling efter 2:a raden
Vi kan uttrycka determinanten på olika sätt!

Sats 2: Låt $A$ vara en $(3 \times 3)$-matrix, och $i, j \in \{1, 2, 3\}$. 

i) det $A = (-1)^{i+j} a_{i1} D_{i1} + (-1)^{i+2} a_{i2} D_{i2} + (-1)^{i+3} a_{i3} D_{i3}$, \{ rad $i$ \}

ii) det $A = (-1)^{i+j} a_{1j} D_{1j} + (-1)^{j+2} a_{2j} D_{2j} + (-1)^{j+3} a_{3j} D_{3j}$, \{ kolonn $j$ \}

Ex.

$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 5 & 3 & -1 \end{pmatrix}$. Bestäm det $A$.

L. Utveckla längs 2:a raden (hest 0:or)

$\det A = -0 \cdot \frac{2 3}{D_{21}} + 1 \cdot \frac{1 3}{D_{22}} - 0 \cdot \frac{1 2}{D_{23}}$

$= -16$.

Utveckla längs 3:e kolonnen.

$\det A = +3 \cdot \frac{0 1}{D_{31}} - 0 \cdot \frac{1 2}{D_{32}} + (-1) \cdot \frac{1 2}{D_{33}}$

$= 3 \cdot (-5) - 1 = -16$.

Tecknet framför $D_{ij}$ bestäms av $(-1)^{i+j}$:

$\begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$
Def. Adjunkten till en kvadratisk matris

$A$ är matrisen $\text{adj } A$ vars element ges av 

$(\text{adj } A)_{ij} = D_{ji} (-1)^{i+j}$

Om $A$ är en $(3 \times 3)$-matris blir

$$
\text{adj } A = \begin{pmatrix}
D_{11} & -D_{21} & D_{31} \\
-D_{12} & D_{22} & -D_{32} \\
D_{13} & -D_{23} & D_{33}
\end{pmatrix}
$$

Sats 3: Om $A$ är inverterbar så är

$$
A^{-1} = \frac{1}{\text{det } A} \cdot \text{adj } A
$$

Kortfattat bevis:

$$
A \cdot \text{adj } A = \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix} \begin{pmatrix}
D_{11} & -D_{21} & D_{31} \\
-D_{12} & D_{22} & -D_{32} \\
D_{13} & -D_{23} & D_{33}
\end{pmatrix}
$$

Vi ser att $(A \cdot \text{adj } A)_{ii} = \text{det } A$ by

Determinantens utveckling längs rad $i$.

$(A \cdot \text{adj } A)_{ij}$, $i \neq j$, är determinanten av

den matris som fås genom att ersätta

den rad $j$ med rad $i$ för matrisen $A$.

Men då blir rad $i = \text{rad } j$ och determinanten

är en sådan matris är noll!

$\therefore A \cdot \text{adj } A = (\text{det } A) \cdot I.$
$$
\begin{align*}
\text{Ex.} \quad A &= \begin{pmatrix} 1 & 4 & 0 \\ -1 & 2 & 1 \\ 0 & 3 & 3 \end{pmatrix}, \\
D_{11} &= \begin{vmatrix} 2 & 3 \\ 3 & 3 \end{vmatrix} = 9, \quad D_{12} &= \begin{vmatrix} -1 & 1 \\ 0 & 3 \end{vmatrix} = -3, \quad D_{13} &= \begin{vmatrix} -1 & 2 \\ 0 & 3 \end{vmatrix} = -3, \\
D_{21} &= \begin{vmatrix} 4 & 0 \\ 3 & 3 \end{vmatrix} = 12, \quad D_{22} &= \begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix} = 3, \quad D_{23} &= \begin{vmatrix} 1 & 4 \\ 0 & 3 \end{vmatrix} = 3, \\
D_{31} &= \begin{vmatrix} 4 & 0 \\ 2 & 1 \end{vmatrix} = 4, \quad D_{32} &= \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} = 1, \quad D_{33} &= \begin{vmatrix} 1 & 4 \\ -1 & 2 \end{vmatrix} = 6.
\end{align*}
$$

$$
\begin{align*}
\text{adj} A &= \begin{pmatrix} D_{11} - D_{21} & D_{21} \\ -D_{12} & D_{22} - D_{32} \\ D_{13} - D_{23} & D_{23} \end{pmatrix} = \begin{pmatrix} 3 & -12 & 4 \\ -3 & 3 & -1 \\ -3 & -3 & 6 \end{pmatrix}, \\
\det A &= \begin{vmatrix} 3 & -12 & 4 \\ -3 & 3 & -1 \\ -3 & -3 & 6 \end{vmatrix} = 0. \\
D_{31} - 3 \cdot D_{32} + 3 \cdot D_{33} &= -3 + 18 = 15. \\
\text{adj} A^{-1} &= \frac{1}{\det A} \text{adj} A = \frac{1}{5} \begin{pmatrix} 1 & -4 & \frac{4}{3} \\ 1 & 1 & -\frac{1}{3} \\ -1 & -1 & 2 \end{pmatrix}, \\
A \cdot \text{adj} A &= \begin{pmatrix} 1 & 4 & 0 \\ -1 & 2 & 1 \\ 0 & 3 & 3 \end{pmatrix} \begin{pmatrix} 3 & -12 & 4 \\ 3 & 3 & -1 \\ -3 & -3 & 6 \end{pmatrix} = \begin{pmatrix} 15 & 0 & 0 \\ 0 & 15 & 0 \\ 0 & 0 & 15 \end{pmatrix}.
\end{align*}
$$
Def. Låt $A$ vara en $(n \times n)$-matris.
Då definieras determinanten av $A$ genom
\[
\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} D_{ij} \quad \text{(Utveckling av det. längs rad 1)}
\]

Sats 4: Låt $A$ vara en $(n \times n)$-matris.
Då gäller att
\[
\begin{align*}
n & \quad \text{i)} \quad \det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} D_{ij} \quad \text{(Utveckling längs rad i)} \\
n & \quad \text{ii)} \quad \det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} D_{ij} \quad \text{(Utveckling längs kolom j)}
\end{align*}
\]

Ex.
\[
A = \begin{pmatrix}
3 & 0 & 0 & 0 \\
5 & 1 & 2 & 0 \\
2 & 6 & 0 & -1 \\
-6 & 3 & 1 & 0
\end{pmatrix}
\]
\[
\det A = \{ \text{utv. längs 1:a raden} \} = \\
\begin{pmatrix}
1 & 2 & 0 & 0 & 5 & 2 & 0 & 0 & 5 & 1 & 0 & 0 & 5 & 1 & 2 \\
3 & 6 & 0 & -1 & 0 & 2 & 0 & -1 & 0 & 2 & 6 & -1 & 0 & 2 & 6 & 0 \\
3 & 1 & 0 & -6 & 1 & 0 & -6 & 3 & 0 & -6 & 3 & 1 & -6 & 3 & 1
\end{pmatrix}
\]
\[
D_{11} \quad D_{12} \quad D_{13} \quad D_{14}
\]
\[
= \{ \text{utv. } D_{11} \text{ längs 3:e kolonnen} \} = \\
3 \cdot \left\{ \begin{pmatrix}
0 & 6 & 0 \\
3 & 1
\end{pmatrix} - (-1) \begin{pmatrix}
1 & 2 \\
3 & 1
\end{pmatrix} + 0 \begin{pmatrix}
1 & 2 \\
6 & 0
\end{pmatrix} \right\} = -15.
\]
\[
D_{12}', \quad D_{23}', \quad D_{33}'
\]
Kombinatorik.

Analoga med def. av determinanter för (3x3)-matriser def. nu determinanten för en godtyckligt matris.

Def. Låt A vara en kvadratisk (n x n)-matris.
Då låter vi, med \((A)_{ij} = a_{ij}\)

\[ \text{det} A = \sum_{\sigma} \text{sgn}(\sigma) a_{\sigma(1)} a_{\sigma(2)} \ldots a_{\sigma(n)} \]

där summan tas över alla permutationer \(\sigma\) av \(1, 2, \ldots, n\).

\(\text{sgn}(\sigma)\) är +1 om antalet byten av permutationen \(\sigma(1) \sigma(2) \ldots \sigma(n)\) som krävs för att nå \(1, 2 \ldots n\) är jämte och \(\text{sgn}(\sigma) = -1\) om dito är udda.

Ex. A är en 4x4-matris.
Välj ut 4 element ur A så att varje rad och kolonn innehåller precis 4 element.
Det finns \(4! = 24\) möjligheter.

Ex. vis
\(\sigma = 2 \ 1 \ 4 \ 3\)
\(\sigma(1) = 2, \ \sigma(2) = 1, \ \sigma(3) = 4, \ \sigma(4) = 3.\)

Svarar mot \(a_{21}, a_{12}, a_{34}, a_{43} = \)
\[ a_{\sigma(1)} a_{\sigma(2)} a_{\sigma(3)} a_{\sigma(4)} \]
Två byten \(\rightarrow 1234 \Rightarrow \text{sgn}(\sigma) = +1.\)
Utveckling av det $A$ längs 1:a raden:

$$
\text{det } A = \sum_{\sigma} \text{sgn}(\sigma) \ a_{(1)} \ a_{(2)} \ a_{(3)} \ a_{(4)}
$$

$$
= \sum_{j=1}^{4} \sum_{\sigma(j)=1} \text{sgn}(\sigma) \ a_{(1)} \ a_{(2)} \ a_{(3)} \ a_{(4)}
$$

$$
= \sum_{j=1}^{4} a_{(j)} \sum_{\sigma(j)=1} \text{sgn}(\sigma) \ a_{(2)} \ a_{(3)} \ a_{(4)}
$$

$$
= a_{11} D_{11} - a_{12} D_{12} + a_{13} D_{13} - a_{14} D_{14}
$$

Samla ihop alla kombinationer där $\sigma(j)=1$

> Samla ihop alla kombinationer där $\sigma(j)=1$

Sats 5: Den kombinatoriska definitionen av determinant stämmer överens med den föregående.
Radoperationer

Hur ändras determinanten vid radoperationer?

i) Addera multipel av en rad till en annan

ii) Multiplikera en rad med \( k \neq 0 \).

iii) Byt plats på två rader.

Sats 6 Operationen i) ändrar ej på determinanten.

Om operationen ii) genomförs på en matris \( A \) så blir determinanten \( k \cdot \text{det}(A) \).

Om operationen iii) genomförs byter determinanten tecken.

Bevis: Följer av multilinejärleken och den alternerande egenskapen hos determinanter.

Ex. Bestäm determinanten av

\[
A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & -2 & 3 \\ -2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \end{pmatrix}
\]

Vi har genomfört operation i) 3 gånger

\[
\rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 7 \\ 0 & 5 & 6 & 9 \\ 0 & 0 & -2 & -3 \end{pmatrix} = B
\]

\( \Rightarrow \text{det} A = \text{det} B \)

Utveckla nu det \( B \) längs kolonn 1.
\[ \det B = 1 \cdot \begin{vmatrix} 2 & 1 & 7 \\ 5 & 6 & 9 \\ 0 & -2 & -3 \end{vmatrix} = \{ \text{Utvända diagonal} \} \]
\[ = 2 \cdot \begin{vmatrix} 2 & 9 \\ -2 & -3 \end{vmatrix} - 5 \cdot \begin{vmatrix} 1 & 7 \\ -2 & -3 \end{vmatrix} + 0 \cdot \begin{vmatrix} 1 & 7 \\ 0 & 6 \end{vmatrix} \]
\[ = 2 \cdot 0 - 5 \cdot 11 = -55. \]

Så det \( A = -55 \).

Def. Den kvadratiska matrisen \( A \) är övertriangulär (undertriangulär) om alla element under (över) diagonalen är lika med noll.

Lemma 2: Determinanten av en över- eller undertriangulär matris är lika med produkten av diagonalelementen.

\[ A = \begin{pmatrix} 1 & * & \cdots & * \\ & 1 & \cdots & * \\ & & \ddots & \cdots \\ & & & 1 \\ 0 & & & \end{pmatrix} \] \( \text{övertriangulär} \)

\[ B = \begin{pmatrix} 1 & * & \cdots & * \\ & 1 & \cdots & * \\ & & \ddots & \cdots \\ & & & 1 \\ & & & \end{pmatrix} \] \( \text{undertriangulär} \)
Sem. IV.

Problem 1 (5.24)

Låt $A$ vara en $(3 \times 3)$-matris, $\vec{y}$ en $(3 \times 1)$-matris.

Bestäm alla implikationer mellan följande påståenden:

1. $A\vec{x} = \vec{y}$ har lösning
2. $A\vec{x} = \vec{0}$ har lösning $\vec{x} \neq \vec{0}$
4. $A$ är inverterbar
5. $	ext{rang}(A) < 3$
6. $\text{nollkol}(A) = 1$

$L$: $3 \iff 4$ enl. Sats

$2 \iff 5$ enl. Sats

$1 \Rightarrow$ lagkonjunktion,

\[ \begin{align*}
L & \Rightarrow 5 \\
L & \Rightarrow 2
\end{align*} \]
2. Problem (5.29)

Låt $A$ vara en $(2 \times 3)$-matris och $B$ en $(3 \times 2)$-matris.

a) Kan $AB$ vara inverterbar?

b) Kan $BA$ vara inverterbar?

\[ L: \]

\[ a) AB \text{ blir en } (2 \times 2) \text{-matris.} \]

Tag t.ex. $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ och $B = A^T$

\[ \Rightarrow AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \]

Svar: Ja.

b) $BA$ blir en $(3 \times 3)$-matris.

BA inver. bar $\iff$ $(BA)x = \bar{0}$ har bara trivial lösning $x = \bar{0}$.

Men $A$ är en $(2 \times 3)$-matris

fler kolonner än rader $\Rightarrow$ parameterlös

$\Rightarrow$ icke-trivialis lösning till $A\bar{x} = \bar{0}$

Svar: Nej.
Problem 3. (5.33)

Låt $M$ vara mängden av alla skev-symmetriska matriser; dvs matriser $A$ av typ $(n \times n)$ sådana att $A^T = -A$.

Visa att $M$ är ett underrum till det linjära rummet av alla $(n \times n)$-matriser.

Bestäm dimensionen av $M$ för $n=3$ och även en bas för $M$ då $n=3$.

L: $\forall \text{ vektorrum om}$

i) $x, y \in V \Rightarrow x+y \in V$

ii) $x \in V \Rightarrow kx \in V \forall k \in \mathbb{R}$.

Vidare skall gälla: $\forall x, y, z \in V$

iii) $x+y = y+x$

iv) $(x+y)+z = x+(y+z)$

v) $\exists$ element $0 \in V$ sa. $x+0 = x \forall x \in V$

vi) För varje $x \in V \exists y \in V$ sa. $x+y = 0$.

vii) $1.x = x \forall x \in V$

viii) Om $a, b \in \mathbb{R} \Rightarrow (ab)x = a(bx) \forall x \in V$

ix) $a(x+y) = ax + ay \forall a, b \in \mathbb{R}$

x) $(a+b)x = ax + bx \forall a, b \in \mathbb{R}$

Om $W \subseteq V$ så är $W$ ett underrum

om i)–x) gäller även i $W$. 

i) \( A^T = -A \) och \( B^T = -B \) gäller då att \( (A+B)^T = -(A+B) \)?

Ja, by 
\[ (A+B)^T = A^T + B^T = -A - B = -(A+B). \]

ii) Om \( A^T = -A \) gäller då att \( (kA)^T = -kA \)? 

Ja, by 
\[ (kA)^T = kA^T = -kA. \]

De övriga egenskaperna gäller också.

**Dimension?**

Diagonalelementen = 0 by \( A^T = -A \).

Alla element under diagonalen ger direkt vad elementen över diagonalen skall vara, \( (A^T = -A) \).

En bas vore därför matriserna

\( B_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} \), \( B_{n2} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \)

Dessa är linjärt oberoende.

Varje skew-symmetrisk matris kan skrivas

\[ A = \sum_{k < l} a_{kl} B_{kl} - \sum_{k < l} a_{kl} B_{kl}^T, \quad a_{kl} \in \mathbb{R} \]

\[ \therefore \dim M = \frac{n(n-1)}{2} \text{ antal } B_{kl}-\text{matriser.} \]