Övning

Lösning

Låt $B(t)$ = jordens befolkning (i miljoner) efter t år och $t=0$ är år 1950

$$\begin{cases}
 B'(t) = KB(t) \\
 B(0) = 2560
\end{cases} \implies B(t) = 2560 e^{kt}$$

1960 $\implies t=10 \implies B(10) = 2560 e^{10k} = 3040$

$$\implies e^{10k} = \frac{3040}{2560} \implies 10k = \ln \left(\frac{3040}{2560} \right)$$

$$\implies k = \frac{1}{10} \ln \left(\frac{3040}{2560} \right)$$

$$\implies B(t) = 2560 e^{\frac{t}{10} \ln \left(\frac{3040}{2560} \right)}$$

År 2020 $\implies t=70 \implies B(70) = 2560 e^{7 \ln \left(\frac{3040}{2560} \right)}$

$$\implies = 2560 e^{7 \ln \left(\frac{3040}{2560} \right)} = 2560 \left(\frac{3040}{2560} \right)^7$$

$$\approx 8524 \text{ miljoner}$$
II. Vid en viss tidpunkt är längden på en rektangels 16 cm och bredden 12 cm. Bredden ökar med 3 cm/s. Hur snabbt ändras längden om area av rektangeln förblir konstant?

Lösning: Area = l(t) * b(t) = C (konstant)

Derivera: l'(t) * b(t) + l(t) * b'(t) = 0 (product regel)

⇒ l'(t) = -\frac{l(t) * b'(t)}{b(t)}

för t = t₀, l(t₀) = 16, b(t₀) = 12 och b'(t₀) = 3
⇒ l'(t₀) = -\frac{16 * 3}{12} = -4 cm/s.

⇒ Längden minskar med hastigheten 4 cm/s.

III. Beräkna med linjär approximation √4,005.

Lösning. Låt f(x) = \sqrt{x}, a = 4

⇒ f''(x) = \frac{1}{2\sqrt{x}}

⇒ f''(4) = \frac{1}{4}.

f(4,005) ≈ f(4) + f'(4) * (4,005 - 4) + \frac{1}{2} * (4,005 - 4)^2

f(4,005) ≈ \frac{1}{4} * (4,005 - 4) + \frac{1}{2} * (4,005 - 4)^2 ≈ 0,00125 + 2

⇒ 2,00125.

IV. Antag att f'(\frac{\pi}{6}) = 2, beräkna derivatan till f(sin^(-1)x) då x = \frac{1}{2}.

Lösning. d/dx(f(sin^(-1)x))|_{x=\frac{1}{2}} = f'(sin^(-1)x) * \frac{1}{\sqrt{1-x^2}}|_{x=\frac{1}{2}} = f'(sin^(-1)\frac{1}{2}) * \frac{1}{\sqrt{1-\frac{1}{4}}}

= f'\left(\frac{\pi}{6}\right) * \frac{1}{\sqrt{\frac{3}{4}}} = 2 * \frac{2}{\sqrt{3}} = \frac{4}{\sqrt{3}}.