Övning: I. Låt \(f(x) = x^2 + x - 4 \).

a) Avgör om \(f(x) \) har några lokala eller globala extremvärden på intervallet \((a, b)\) och bestäm iså fall dessa.

b) Samma fråga men på intervallet \([0, 3] \).

Lösning

a) \(f(x) \) är kontinuerlig och drivbarbar på \(\mathbb{R} \) (polynom).

Om \(f \) har ett lokalt (eller global) extremvärde på \(x = c \) så är \(f''(c) = 0 \).

\[f'(x) = 3x^2 + 1 > 0 \quad (f(x) \text{ är växande}) \Rightarrow f''(x) = 0 \text{ är olösbar} \Rightarrow \text{inget extremvärde.} \]

b). Eftersom \([0, 3]\) är ett stängt intervall \(f \) kont. på \([0, 3]\)

... globalt min och ett globalt max.

(i) Inga kritiska punkter

(ii) \(f(0) = -4 \leftarrow \text{min.} \)

\(f(3) = 27 + 3 - 4 = 26 \leftarrow \text{max} \)
II. Bestäm den globala min och globala max till
\[f(t) = 2 \cos t + \sin 2t \text{ på } [0, \frac{\pi}{2}] \] (ex. 57 s. 284).

Lösning: \(f \) är kont. på \([0, \frac{\pi}{2}] \) ⇒ \(f \) har max och min

(i) Kritiska punkter:

\[
 f'(t) = -2 \sin t + 2 \cos (2t) = 0
\]

\[\iff \sin t = \cos (2t) \Rightarrow \cos (2t) = \cos \left(\frac{\pi}{2} - t \right). \]

\[
 \Rightarrow \begin{align*}
 2t &= \frac{\pi}{2} - t + 2n\pi \\
 2t &= -(\frac{\pi}{2} - t) + 2n\pi = -\frac{\pi}{2} + t + 2n\pi \\
 \end{align*} \\
\Rightarrow \begin{align*}
 3t &= \frac{\pi}{2} + 2n\pi \\
 t &= \frac{\pi}{2} + 2n\pi \\
 \end{align*}
\]

Vi tar alla värdena som ligger i \((0, \frac{\pi}{2}) \).

\[=) \ t_1 = \frac{\pi}{6} \]

\[(\frac{\pi}{6} + \frac{2\pi}{3} = \frac{5\pi}{6} \notin (0, \frac{\pi}{2})) \]

\[\frac{\pi}{6} - \frac{2\pi}{3} = -\frac{3\pi}{6} < 0 \notin (0, \frac{\pi}{2}) \]

alla \(t = -\frac{\pi}{2} + 2n\pi \notin (0, \frac{\pi}{2}) \).

\[=) \ t_1 = \frac{\pi}{6} \text{ är den endast kritiska punkten.} \]

\[f\left(\frac{\pi}{6} \right) = 2 \cos \frac{\pi}{6} + \sin \frac{\pi}{3} = 2 \cdot \sqrt{3} + \sqrt{3} = \frac{3\sqrt{3}}{2}. \]

(ii) \(f(0) = 2 \cos 0 + \sin 0 = 2 \)

\[f\left(\frac{\pi}{2} \right) = 2 \cos \frac{\pi}{2} + \sin \pi = 0. \]

(iii) Maxvärde: \[f\left(\frac{\pi}{6} \right) = \frac{3\sqrt{3}}{2}. \]

Minvärde: \[f\left(\frac{\pi}{6} \right) = 0. \]