1. Solve the ODE for the so-called logistic growth model
 \[y' = y(1 - y). \]

2. Find a function \(y: \mathbb{R} \to \mathbb{R} \) such that
 \[y' = 3y^{2/3} \quad \text{and} \quad y(0) = 0. \]

3. Let \(\alpha > 0 \) and define
 \[y(x) = \begin{cases}
 0 & \text{for } x < \alpha, \\
 (x - \alpha)^3 & \text{for } x \geq \alpha.
 \end{cases} \]
 Show this is a solution to problem 2. Is it the solution you found earlier?
 Hint: If the definition of a function makes you uncertain, try to make a rough sketch of its graph.

4. Solve the ODE
 \[y' = x - y. \]

5. Solve the ODE
 \[y'' + 2y' + 2y = 0. \]
 Express your answer without using complex exponential functions.

6. Solve the ODE
 \[y'' + 3y' + 2y = \sin x. \]
 Express your answer without using complex exponential functions.

7. Solve the ODE
 \[y'' + 4y' + 4y = e^{-2x}. \]
 Express your answer without using complex exponential functions.

8. (Optional) Solve the ODE
 \[y' = \frac{y + x}{\sqrt{1 - x^2}}. \]