3.6 Derivator av logaritma funktioner.

Sats: 1) $f(x) = \ln x$ är inversen till $g(x) = e^x$.

$$f^{-1}(x) = \frac{1}{e^{\ln x}} = \frac{1}{x}.$$

$$\ln x' = \frac{1}{x}$$

2) $(\ln u)' = \frac{u'}{u}$ (kedjeregeln).

Ex. Beräkna $f'(x)$ om $f(x) = \ln\left(\frac{x-1}{x+2}\right)$.

Lösning. $f'(x) = \left(\frac{x-1}{x+2}\right)' = \frac{x+2 - x+1}{(x+2)^2} = \frac{3}{(x+2)^2} \cdot \frac{x+2}{x-1} = \frac{3}{(x-1)(x+2)}$.

3.8 Exponentiell tillväxt och sönderfall

En vanlig tillämpning av derivator är att lösa ODE (differentialekvationer). En ODE är en ekvation som involverar en funktion och sin derivata (t.ex. $f'(t) = kf(t)$, ke^{kt}).

Sats: Ekvationen $f'(t) = kf(t)$ har lösningen $f(t) = f(0) e^{kt}$.

Bevis: $f(t) = f(0) e^{kt}$, $\Rightarrow f'(t) = f(0) ke^{kt} = k\left(\frac{f(0) e^{kt}}{f(t)}\right) = kf(t)$.

Ex. Lös ODE: $\int y'(t) = 2 y(t)$

$$y(0) = 3.$$

Lösning: $y(t) = 3 e^{2t}$.
Ekvationen \(y'(t) = ky(t) \) är en vanlig beskrivning av verkliga processer: bakteriell tillväxt, radioaktivt sönderfall.

Om \(k > 0 \) pratar man om exponentiell tillväxt, om \(k < 0 \) pratar man om exponentiell sönderfall eller avtagande.

Ex. Låt \(T(t) \) = temperaturen hos ett objekt vid tiden t, och låt \(T_s \) = omgivningens temperatur.

Newton's avsvalningslag: Förändringen av temperaturen hos objektet är proportionell mot temperaturdifferensen \(T(t) - T_s \).

Dvs \(T'(t) = k(T(t) - T_s) \).

Anta att \(T(0) = T_0 \). Bestäm \(T(t) \).

\[\text{Lösning:} \begin{cases} T'(t) = k(T(t) - T_s) \\ T(0) = T_0 \end{cases} \]

Låt \(f(t) = T(t) - T_s \) \(\Rightarrow \) \(f'(t) = T'(t) \) (\(T_s \) är konstant).

\(= \) \(T'(t) = k(T(t) - T_s) \) \(\Rightarrow \) \(f'(t) = kf(t) \)

och \(f(0) = T(0) - T_s = T_0 - T_s \).

\(\Rightarrow \) \(f(t) = f(0)e^{kt} = (T_0 - T_s)e^{kt} \)

\(= \) \(T(t) = T_s + (T_0 - T_s)e^{kt} \).

Ex. En burk läsk som befanns i rumstemperatur (22°C) stoppas in i ett kylskåp (4°C). Efter en halvtimme är burkan 16°C. Hur varm kommer den att vara efter en timme?

\[\text{Lösning:} \begin{cases} T'(t) = k(T(t) - 4) \\ T(0) = 22 \end{cases} \]

\(\Rightarrow \) \(T(t) = 4 + (22 - 4)e^{kt} = 18e^{kt} + 4 \).
\[T(t) = 15e^{kt} + 7. \]

\[T(0.5) = 16 \implies 15e^{0.5k} + 7 = 16 \implies 15e^{0.5k} = 9 \implies e^{0.5k} = \frac{9}{15} = \frac{3}{5} \]

\[\implies 0.5k = \ln \left(\frac{3}{5} \right) \implies k = 2\ln \left(\frac{3}{5} \right) \]

Thus:

\[T(t) = 15e^{2t\ln \left(\frac{3}{5} \right)} + 7 \]

\[\implies T(1) = 15e^{2\ln \left(\frac{3}{5} \right)} + 7 = 15e^{\ln \left(\frac{3}{5} \right)^2} + 7 = 15 \left(\frac{3}{5} \right)^2 + 7 \]

\[= 15 \cdot \frac{9}{25} + 7 = \frac{27}{5} + 7 = 5.4 + 7 = 12.4 \, ^\circ C. \]
3.9 Relaterade Hastigheter

Några problem handlar om att flera störheter förändras med tiden.

Ex. Ett flygplan flyger horisontellt med hastigheten 600 km/h. Hur snabbt ökar avståndet mellan planet och en radiosändare 1 min efter det att planet har passerat över sändaren på höjden 5 km?

Låt D vara avståndet mellan planet och radiosändaren.

$$D^2 = x^2 + 25$$
(x som i figuren till vänster)

D och x är funktioner av t. (D och x förändras med tiden) $\Rightarrow D^2(t) = x^2(t) + 25$.

Derivera HL och VL $\Rightarrow 2D(t) D'(t) = 2x(t) \cdot x'(t) + 0$.

$\Rightarrow D(t) D'(t) = x(t) \cdot x'(t)$ $\Rightarrow D'(t) = \frac{x(t)}{D(t)} \cdot x'(t)$.

Vi behöver beräkna $x(t)$ och $D(t)$. $x'(t) = \frac{dx}{dt} = 600$ km/h.

$t = 1$ min. $= \frac{1}{60}$ h. Alltså, $x\left(\frac{1}{60}\right) = \frac{1}{60} \cdot 600 = 10$ km.

$D^2\left(\frac{1}{60}\right) = x^2 + 25 = 100 + 25 = 125 \Rightarrow D\left(\frac{1}{60}\right) = \sqrt{125} = 5\sqrt{5}$ km

$\Rightarrow D'(t) = \frac{10}{5\sqrt{5}} \cdot 600 = \frac{1200}{\sqrt{5}}$ km/h.
3.10 Linjär approximation.

Låt \(f(x) \) vara en funktion och \((x) \) vara tangentlinjen till \(f(x) \) i punkten \((a, f(a)) \).

Ekvationen av tangenten är:

\[
y = f'(a) (x-a) + f(a)
\]

T.ex. om \(f(x) = x^2 \) och \(a = 2 \) så \(f(a) = 4 \), \(f'(x) = 2x \)

\[
\Rightarrow \text{tangent: } y = 2 \cdot 2 (x-2) + 4
\]
\[
= 4x - 8 + 4 = 4x - 4.
\]

Om man vill beräkna \(f(x) \) där \(x \) ligger nära \(2 \) kan man approximera \(f(x) \) med \(f'(a) (x-a) + f(a) \).

\[
f(2+0,001) = 2,001^2 = 4,004001 \quad \text{genom att använda } f(x)
\]
\[
f(2+0,001) \approx 4 \left(\frac{2+0,001}{x} - 2 \right) + f(2)
\]
\[
= 4 \cdot 0,001 + 4 = 4,004 \approx f(2,001).
\]

\(L(x) = f'(a) (x-a) + f(a) \) kallar för linjärt approximation av \(f \) i \(x = a \).

Ex. Beräkna \(\sin \left(\frac{\pi}{3} - 0,01 \right) \) med linjärt approximation:

Låt \(f(x) = \sin x \) \(\Rightarrow f'(x) = \cos x \) och låt \(a = \frac{\pi}{3} \).

\[
\Rightarrow L(x) = f'(\frac{\pi}{3}) (x - \frac{\pi}{3}) + f(\frac{\pi}{3})
\]
\[
= \cos \frac{\pi}{3} \left(x - \frac{\pi}{3} \right) + \sin \frac{\pi}{3} = \frac{1}{2} (x - \frac{\pi}{3}) + \frac{\sqrt{3}}{2}.
\]

\[
\Rightarrow \sin \left(\frac{\pi}{3} - 0,01 \right) \approx L\left(\frac{\pi}{3} - 0,01 \right) = \frac{1}{2} \left(\frac{\pi}{3} - 0,01 - \frac{\pi}{3} \right) + \frac{\sqrt{3}}{2}
\]
\[
= -0,0005 + \frac{\sqrt{3}}{2}.
\]